banner



Y X Ye Y-2x Dy Find the General Solution

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

Last updated at Sept. 14, 2018 by

Find the particular solution of the differential equation :

ye y dx = (y 3 + 2xe y ) dy,  y(0) = 1

OR

Show that (x − y)dy = (x + 2y)dx is a homogenous differential equation. Also, find the general solution of the given differential equation.

Download Sample Paper of Class 12 here  https://www.teachoo.com/cbse/sample-papers/

19-1.jpg

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 2

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 3

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 4

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 5

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 6

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 7

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 8

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 9

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 10

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 11

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 12

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 13

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 14

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 15

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 16

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 17

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 18

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 19


Transcript

Question 19 Find the particular solution of the differential equation : yey dx = (y3 + 2xey) dy, y(0) = 1 Given equation yey dx = (y3 + 2xey) dy We try to put in form 𝑑𝑦/𝑑π‘₯ + Py = Q or 𝑑π‘₯/𝑑𝑦 + P1 x = Q1, yey dx = (y3 + 2xey) dy (𝑦𝑒^𝑦)/((𝑦3 + 2π‘₯𝑒^𝑦)) = 𝑑𝑦/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = (𝑦𝑒^𝑦)/((𝑦3 + 2π‘₯𝑒^𝑦)) This is not of the form 𝑑𝑦/𝑑π‘₯ + Py = Q ∴ We find 𝑑π‘₯/𝑑𝑦 𝑑π‘₯/𝑑𝑦 = ((𝑦^3 + 2π‘₯𝑒^𝑦))/(𝑦𝑒^𝑦 ) 𝑑π‘₯/𝑑𝑦 = 𝑦^3/(𝑦𝑒^𝑦 )+(2π‘₯𝑒^𝑦)/(𝑦𝑒^𝑦 ) 𝑑π‘₯/𝑑𝑦 = 𝑦^2/𝑒^𝑦 +2π‘₯/𝑦 𝑑π‘₯/𝑑𝑦−2π‘₯/𝑦 = 𝑦^2/𝑒^𝑦 𝑑π‘₯/𝑑𝑦+((−2)/𝑦)π‘₯ = 𝑦^2/𝑒^𝑦 Comparing with 𝑑π‘₯/𝑑𝑦 + P1 x = Q1 Where P1 = (−2)/𝑦 & Q1 = 𝑦^2/𝑒^𝑦 Find Integrating factor, IF = 𝑒^∫1▒〖𝑃1 𝑑𝑦〗 = 𝑒^∫1▒(−2𝑑𝑦)/𝑦 = 𝑒^(−2∫1▒𝑑𝑦/𝑦) = 𝑒^(−2 log⁡𝑦 ) Using a log b = log ba = 𝑒^(〖log⁡𝑦〗^(−2) ) = 𝑦^(−2) = 1/𝑦^2 Solution is π‘₯ (IF) = ∫1▒〖(𝑄1×𝐼𝐹)𝑑𝑦+𝑐〗 π‘₯ × 1/𝑦^2 = ∫1▒〖𝑦^2/𝑒^𝑦 ×1/𝑦^2 𝑑𝑦+𝑐〗 π‘₯/𝑦^2 = ∫1▒〖1/𝑒^𝑦 𝑑𝑦+𝑐〗 π‘₯/𝑦^2 = ∫1▒〖𝑒^(−𝑦) 𝑑𝑦+𝑐〗 π‘₯/𝑦^2 = −1 ×𝑒^(−𝑦)+𝑐 π‘₯/𝑦^2 = 〖−𝑒〗^(−𝑦)+𝑐 π‘₯ = 〖−𝑦^2 𝑒〗^(−𝑦)+𝑐𝑦^2 We need to find particular solution, Putting x = 0, y = 1 0 = 〖−1^2 𝑒〗^(−1)+𝑐〖(1)〗^2 0 = 〖−𝑒〗^(−1)+𝑐 𝑒^(−1) =𝑐 c=𝑒^(−1) c=1/𝑒 Putting value of c in (2) π‘₯ = 〖−𝑦^2 𝑒〗^(−𝑦)+𝑐𝑦^2 π‘₯ = 〖−𝑦^2 𝑒〗^(−𝑦)+(1/𝑒) 𝑦^2 𝒙 = 〖−π’š^𝟐 𝒆〗^(−π’š)+π’š^𝟐/𝒆 Question 19 Show that (x − y)dy = (x + 2y)dx is a homogenous differential equation. Also, find the general solution of the given differential equation. Theory To prove homogenous Step 1: Find 𝑑𝑦/𝑑π‘₯ Step 2: Put F(π‘₯ , 𝑦)=𝑑𝑦/𝑑π‘₯ & Find F(πœ†π‘₯ ,πœ†π‘¦) Step 3: Then solve using by putting 𝑦=𝑣π‘₯ Finding 𝑑𝑦/𝑑π‘₯ (x − y)dy = (x + 2y)dx 𝑑𝑦/𝑑π‘₯=((π‘₯ + 2𝑦)/(π‘₯ − 𝑦)) Now, Putting F(π‘₯ , 𝑦)=𝑑𝑦/𝑑π‘₯ & Find F(πœ†π‘₯ ,πœ†π‘¦) Let F(π‘₯ , 𝑦)=((π‘₯ + 2𝑦)/(π‘₯ − 𝑦)) Finding F(𝝀𝒙 ,π€π’š) F(πœ†π‘₯ ,πœ†π‘¦)=(πœ†π‘₯ + 2(πœ†π‘¦))/(πœ†π‘₯ −πœ†π‘¦) =πœ†(π‘₯ + 2𝑦)/(πœ† (π‘₯ − 𝑦) ) =((π‘₯ + 2𝑦))/(π‘₯ − 𝑦) = F(π‘₯ , 𝑦) Thus , F(πœ†π‘₯ ,πœ†π‘¦)="F" (π‘₯ , 𝑦)" " =πœ†°" F" (π‘₯ , 𝑦)" " Thus , "F" (π‘₯ , 𝑦)" is Homogeneous function of degree zero" Therefore, the given Differential Equation is Homogeneous differential Equation Step 3: Solving 𝑑𝑦/𝑑π‘₯ by Putting 𝑦=𝑣π‘₯ 𝑑𝑦/𝑑π‘₯=((π‘₯ + 2𝑦)/(π‘₯ − 𝑦)) Let 𝑦=𝑣π‘₯ So , 𝑑𝑦/𝑑π‘₯=𝑑(𝑣π‘₯)/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯=𝑑𝑣/𝑑π‘₯ . π‘₯+𝑣 𝑑π‘₯/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯=𝑑𝑣/𝑑π‘₯ π‘₯+𝑣 Putting 𝑑𝑦/𝑑π‘₯ π‘Žnd 𝑦/π‘₯ 𝑖𝑛 (𝑖) 𝑖.𝑒. 𝑑𝑦/𝑑π‘₯=(π‘₯ + 2𝑦)/(π‘₯ − 𝑦) 𝑑𝑣/𝑑π‘₯ π‘₯+𝑣= (π‘₯ + 2 𝑣π‘₯)/(π‘₯ − 𝑣π‘₯) 𝑑𝑣/𝑑π‘₯ π‘₯+𝑣= π‘₯(1 + 2𝑣)/π‘₯(1 − 𝑣) 𝑑𝑣/𝑑π‘₯ π‘₯+𝑣= (1 + 2𝑣)/(1− 𝑣) 𝑑𝑣/𝑑π‘₯ π‘₯= (1 + 2𝑣)/(1− 𝑣)−𝑣 𝑑𝑣/𝑑π‘₯ . π‘₯= (1 + 2𝑣 − 𝑣 (1− 𝑣))/(1 −𝑣) 𝑑𝑣/𝑑π‘₯ . π‘₯= (1 + 2𝑣 − 𝑣 +〖 𝑣〗^2)/(1 − 𝑣) 𝑑𝑣/𝑑π‘₯ . π‘₯= (〖 𝑣〗^2 + 𝑣 + 1)/(1 − 𝑣) 𝑑𝑣/𝑑π‘₯ π‘₯=−((〖 𝑣〗^2 + 𝑣 + 1)/(𝑣 − 1)) 𝑑𝑣((𝑣−1)/(𝑣^(2 )+ 𝑣 + 1))=(− 𝑑π‘₯)/π‘₯ Integrating Both Sides ∫1▒〖(𝑣 −1)/(𝑣^2 + 𝑣 + 1) 𝑑𝑣=∫1▒(−𝑑π‘₯)/π‘₯〗 ∫1▒〖(𝑣 −1)/(𝑣^2 + 𝑣 + 1) 𝑑𝑣=−∫1▒𝑑π‘₯/π‘₯〗 ∫1▒〖((𝑣 −1) 𝑑𝑣)/(𝑣^2 + 𝑣 + 1) 𝑑𝑣〗=−log⁡〖|π‘₯|〗 + 𝑐 We can write 𝑣^2+𝑣+1 = 𝑣^2 + 1/2 . 2v + (1/2)^2+1−(1/2)^2 =(𝑣+1/2)^2 + 1 – 1/4 =(𝑣+1/2)^2+3/4 Putting 𝑣^2+𝑣+1=(𝑣+1/2)^2+3/4 & 𝑣−1=𝑣+𝟏/𝟐−𝟏/𝟐−1 =(𝑣+1/2)−3/2 ∫1▒((𝑣 + 1/2) − 3/2)/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣=−log⁡〖π‘₯+𝑐〗 ∫1▒(𝑣 + 1/2)/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣−3/2 ∫1▒1/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣=−log⁡〖π‘₯+𝑐〗 Thus, I = I1 – (3 )/2 I2 Solving 𝐼1 𝐼1=∫1▒((𝑣 + 1/2))/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣 Put (𝑣+ 1/2)^2+ 3/4 =𝑑 Diff. w.r.t. 𝑣 𝑑((𝑣 + 1/2)^2+ 3/4)/𝑑𝑣=𝑑𝑑/𝑑𝑣 2(𝑣+1/2)=𝑑𝑑/𝑑𝑣 𝑑𝑣=𝑑𝑑/2(𝑣 + 1/2) Putting value of v & dv in I1 𝐼1=∫1▒((𝑣 + 1/2))/𝑑 ×𝑑𝑑/2(𝑣 + 1/2) =1/2 ∫1▒𝑑𝑑/𝑑 =1/2 log⁡ |𝑑| Putting 𝑑=(𝑣+ 1/2)^2+3/4 =1/2 π‘™π‘œπ‘”|(𝑣+ 1/2)^2+3/4| =1/2 π‘™π‘œπ‘”|𝑣^2+2𝑣 × 1/2 + 1/4 + 3/4| I1 =1/2 log⁡〖 |𝑣^2+𝑣+1|〗 Solving π‘°πŸ 𝐼2=∫1▒𝑑𝑣/((𝑣 + 1/2)^2+3/4) =∫1▒𝑑𝑣/((𝑣 + 1/2)^2+(√3/2)^2 ) Put 𝑑=𝑣+1/2 Diff. w.r.t. 𝑣 𝑑𝑑/𝑑𝑣=1 ⇒ 𝑑𝑑=𝑑𝑣 = ∫1▒𝑑𝑑/(𝑑^2 + 〖 (√3/2)〗^2 ) =1/(√3/2) tan^(−1)⁡〖𝑑/(√3/2)〗 =2/√3 tan^(−1)⁡〖2(𝑣 + 1/2)/√3〗 =2/√3 tan^(−1)⁡((2𝑣 + 1)/√3) Hence I = 𝐼1−3/2 𝐼2 I =1/2 log⁡ |𝑣^2+𝑣+1|−3/2 ×2/√3 tan^(−1)⁡((2𝑣 +1)/√3) I =1/2 log⁡ |𝑣^2+𝑣+1|−√3 tan^(−1)⁡((2𝑣 +1)/√3) Replacing v by (𝑦 )/π‘₯ I =1/2 π‘™π‘œπ‘”|(𝑦/π‘₯)^2+𝑦/π‘₯+1|−√3 tan^(−1)⁡((2𝑦/π‘₯ + 1)/√3) I =1/2 π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|−√3 tan^(−1)⁡((2𝑦 + π‘₯)/(√3 π‘₯)) Putting Value of I in (2) 1/2 π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|−√3 tan^(−1)⁡((2𝑦 + π‘₯)/(√3 π‘₯))=−π‘™π‘œπ‘”|π‘₯|+𝑐 1/2 π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|+π‘™π‘œπ‘”|π‘₯|=√3 tan^(−1)⁡((2𝑦 + π‘₯)/(√3 π‘₯))+𝑐 Multiplying Both Sides By 2 π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|+2 π‘™π‘œπ‘”|π‘₯|=2 √3 tan^(−1)⁡((2𝑦 + π‘₯)/(√3 π‘₯))+2𝑐 π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|+π‘™π‘œπ‘”|π‘₯|^2=2√3 tan^(−1)⁡((2𝑦 + π‘₯)/(√3 π‘₯))+2𝑐 Put 2𝑐=𝑐 π‘™π‘œπ‘”[|𝑦^2/π‘₯^2 +𝑦/π‘₯+1| × |π‘₯^2 |]=2√3 tan^(−1)⁡((2𝑦 + π‘₯)/(√3 π‘₯))+𝑐 π‘™π‘œπ‘”|〖π‘₯^2 𝑦〗^2/π‘₯^2 +(π‘₯^2 𝑦)/π‘₯+π‘₯^2 |=2√3 tan^(−1)⁡((π‘₯ + 2𝑦)/(√3 π‘₯))+𝑐 π’π’π’ˆ|𝒙^𝟐+π’™π’š+π’š^𝟐 |=𝟐√πŸ‘ 〖𝒕𝒂𝒏〗^(−𝟏)⁡((𝒙 + πŸπ’š)/(√πŸ‘ 𝒙))+𝒄 Is the General Solution of the Differential Equation given

Y X Ye Y-2x Dy Find the General Solution

Source: https://www.teachoo.com/7210/2242/Question-19/category/CBSE-Sample-Paper-Class-12---2017-18/

0 Response to "Y X Ye Y-2x Dy Find the General Solution"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel